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Abstract

The paper gives a review of integrated photoelasticity and of its application for residual stress
measurement in glass. By considering the basic theory of the method, two particular cases, the
case of weak birefringence and that of constant principal stress axes, are picked up. It is shown
that integrated photoelasticity is actually optical tensor "eld tomography. Its peculiarities in
comparison with scalar "eld tomography are considered. Since directly integrated photoelastic-
ity allows for the measurement of only some of the stress components, analytical or numerical
methods are to be used for complete determination of the stress "eld. Nonlinear optical
phenomena, interference blots and fringe bifurcation, are brie#y considered. Several examples
illustrate the application of the method. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Residual stress is one of the most important characteristics of glass articles from the
point of view of their strength and resistance [1,2]. In the case of optical glass,
birefringence caused by the residual stresses characterizes the optical quality of the
article.

During about a century, photoelasticity [3] has been the most widely used method
for quality control in the glass industry. Two-dimensional photoelasticity permits the
determination of the so-called form stresses (which are constant through the thickness
in #at glass). As for the thickness stresses (which vary parabolically through the
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Fig. 1. Experimental set-up in integrated photoelasticity.

thickness), their distribution can be determined using the scattered light method.
Speci"c methods have been developed for nondestructive determination of the stresses
on the surfaces of the #at glass [4].

It is much more complicated to estimate stresses in glass articles of complicated
shape: in bottles, drinking glasses, tubes, "bres and "bre preforms, etc. At the same
time, development of glass technology demands exact information about the residual
stresses in glass articles. Let us mention that while numerical methods are being
successfully used for the calculation of stresses in glass caused by external loads (e.g.,
by internal pressure in bottles [5,6]), their application for the calculation of the
residual stresses gives less reliable results due to the lack of exact data about the
temperature distribution and physical parameters of the specimen during various
phases of the production process [7].

Thus, development of experimental, desirably nondestructive, methods for residual
stress measurement in glass articles of complicated shape is of current interest. For this
purpose during the last two decades considerable development of integrated photoelas-
ticity has taken place. In this paper, basic theory, measurement technology, and several
applications of integrated photoelasticity in glass stress measurement are described.

2. Integrated photoelasticity

In integrated photoelasticity [4,8], the three-dimensional transparent specimen is
placed in an immersion tank and a beam of polarized light is passed through the
specimen (Fig. 1). Transformation of the polarization of light is measured for many
light rays, and, except the case when the specimen is axisymmetric, for many azimuths
of the light beam. In certain cases, distribution of some (or all) stress components can
be determined using the integrated measurement data.

Propagation of polarized light in the direction of the z-axis through a 3-D in-
homogeneous birefringent medium is governed by the following equations [8]:
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where E
x

and E
y
are components of the electric vector along the axes x and y, C is the

photoelastic constant, and p
x
,p

y
and q

xy
are components of the stress tensor in the

plane xy.
Solution of Eqs. (1) can be expressed as [8]
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where E
x0

and E
y0

are components of the incident light vector, E
xH and E

yH are those
of the emergent light vector, and ; is a 2]2 unitary unimodular matrix.

Analysis of the transformation matrix ; has shown that there always exist two
mutually perpendicular directions of the polarizer by which the light emerging from
the specimen is linearly polarized. These directions of polarization of the incident and
emergent light are named the primary and secondary characteristic directions. Due to
their exceptional physical properties, characteristic directions can be determined
experimentally. Besides these, it is possible to measure the characteristic optical
retardation.

In the general form the inverse problem of integrated photoelasticity may be
formulated as follows. Stress "eld of the specimen can be described as a set of
functions which contain a number of unknown coe$cients. Photoelastic measure-
ments are to be carried out for many light rays in many directions. Parameters of the
transformation matrix; for every ray depend on the stress coe$cients. The latter are
to be determined on the basis of the characteristic parameters. In addition, equations
of the theory of elasticity are to be used. Thus, in the general case the inverse problem
of integrated photoelasticity is highly complicated.

3. Two particular cases

System (1) can be written in the matrix form as
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Using the Peano}Baker method, the solution of Eq. (3) can be written, following Eq.
(2), in the form
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In zero approximation;"I. That is the case when the medium is not birefringent
(C"0). First approximation [the "rst two terms in Eq. (6)] reveals
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Matrix ; is the matrix of a birefringent plate with weak birefringence:
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It follows that in the case of weak birefringence, a 3-D photoelastic model behaves
optically similarly to a single birefringent plate. It is possible to measure the parameter
of the isoclinic u and optical retardation D, which are related to the components of the
stress on the light ray through the relationships
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It is possible to show that if rotation of the principal stress axes on the light ray is
moderate, Eqs. (12) and (13) are valid also in the case when conditions (10) and (11) are
not observed. If there is no rotation of the principal stress axes, Eqs. (12) and (13) are
valid for arbitrary birefringence. In this case, Eqs. (12) and (13) can be written as
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which is named the integral Wertheim law.

4. Integrated photoelasticity as optical tomography of the tensor 5eld

Since determination of stress in integrated photoelasticity is in certain cases based
on integral relationships (12) and (13), its analogy with tomography is evident. In
tomography [9,10], for the determination of the internal structure of an object,
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Fig. 2. In tomography experimental data g(l,h) is recorded for many rays and many azimuths h of the
radiation.

a certain radiation is passed through a section of the test object (Fig. 2) and a property
of this radiation, after it has passed the object, is measured. This property may be
intensity, phase, polarization, etc. Such measurements are made for a great number of
rays and for a great number of observation directions.

Let f (r,u) be the function which describes the "eld to be determined. What is
measured experimentally is the Radon transform of the "eld

P
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The function f (r,u) can be determined with the aid of the Radon inversion
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In integrated photoelasticity we have instead of Eq. (15) two integral relationships
(12) and (13), which carry information about the stress "eld under investigation. Since
stress measurement in integrated photoelasticity is also carried out by sections, it may
be considered as a kind of tomography which has several peculiarities in comparison
with the traditional tomography.

Traditional tomography is scalar "eld tomography, i.e., every point of the "eld is
characterized by a single scalar (attenuation coe$cient, scalar refractive index, etc.).
Since stress is a tensor, every point of a stress "eld is characterized by a second-rank
tensor. Thus, integrated photoelasticity is actually optical tensor "eld tomography
with many peculiarities [11,12] which are shown in Table 1.

5. Measurement of the distribution of the normal stresses

Let us consider measurement of stresses in a 3-D specimen of arbitrary shape
assuming that birefringence (or rotation of the principal stress axes) is weak. Passing
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Table 1
Scalar "eld vs. tensor "eld tomography

Scalar "eld tomography Tensor "eld tomography

Character of the 5eld
Scalar s(x, y) Tensor p

ij
(x, y)

Medium
Mostly isotropic Anisotropic
Radiation
Nonpolarized Polarized
Measurement data
Line integrals Nonlinear relationships, in exceptional cases line

integrals
In6uence of a point on the measurement data
Does not depend on the direction of the radiation Depends on the direction of the radiation
Preliminary information about the 5eld
Usually not needed Equations of continuum mechanics
Uniqueness of the reconstructed 5eld
Has been proved ?

Fig. 3. Illustration to the investigation of the general 3-D state of stress.

light through the cross-section z"const (Fig. 3), for each ray y@(l,h) it is possible to
measure the parameter of the isoclinic u and optical retardation D.

Further, let us consider equilibrium condition for the direction x@ of a 3-D
segment ABC cut out of the specimen by the planes z"z

0
, z"z

0
#Dz, and y@z@ (Fig.

3). The shear force in the direction of x@ at the upper surface of the segment can be
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expressed as
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Here the bar denotes values for the upper surface.
The equilibrium condition for the segment ABC in the direction of x@ reveals
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From Eqs. (12) and (19) we obtain
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This relationship shows that from experimental data it is possible to calculate
integrals of p

z
for any direction y@(l,h). If photoelastic measurements have been carried

out for a su$cient number of angles h (turning the specimen around the z-axis), and
for each h for a su$cient number of values of l, the distribution of p

z
can be

determined using methods of traditional tomography. It means that we have reduced
a complicated problem of tensor "eld tomography to a problem of scalar "eld
tomography for a single component p

z
of the stress tensor.

Carrying out measurements for many values of z, distribution of p
z

in all the
specimen can be determined. Since the axis z, around which the specimen is rotated
during measurements, can be chosen arbitrarily, distribution of all the normal stresses
in any section of the specimen can be determined.

If a specimen of prismatic form with arbitrary cross-section has no stress gradient in
the direction of its axis z, then in Eq. (20) we have<

2
"<M

2
"0 and the distribution of

p
z

is determined on the basis of photoelastic measurements in a single section.

6. Integrated photoelasticity as hybrid mechanics

6.1. Axisymmetric stress distribution

In case of an axisymmetric specimen it is su$cient to make photoelastic measure-
ments only by one direction of the light beam. The axial stress p

z
distribution is

determined from Eq. (20), and distribution of the shear stress q
zr

from Eq. (13) since
(Fig. 3)

q
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To determine also the other stress components, the radial stress p
r

and the circum-
ferential stress ph , equations of the theory of elasticity are to be used. Combined
application of experimental and analytical or numerical methods is named hybrid
mechanics.

If stresses are due to external loads, stress components p
r
and ph can be determined

from the equilibrium equation
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where p
z

and q
zr

have been determined experimentally. Such an algorithm has been
elaborated by Doyle and Danyluk [13].

In case of residual stresses, the compatibility equation (23) cannot be used since the
source of the residual stresses is incompatible initial deformations.

By stress measurement in glass cylinders without stress gradient in the axial
direction, instead of Eq. (23) the so-called classical sum rule [14] can be used:

p
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If the stress gradient in the axial direction is present, one has to use the generalized
sum rule which in the "rst approximation is [15,16]
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where C is the integration constant to be determined from the boundary conditions.
Thus, the axisymmetric residual stress distribution can be completely determined.

By derivation of Eqs. (24) and (25) it has been assumed that residual stresses in glass
may be interpreted as thermal stresses due to a certain "ctitious temperature "eld
[17,18].

6.2. The case of plane deformation

For the case of plane deformation, Puro and Kell [19] have derived the following
equation in cylindrical coordinates:

L2F

Lr2
#

1

r

LF

Lr
#

1

r2
L2F
Lh2

"p
z
!s (26)

submitted to the boundary conditions
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Fig. 4. Computer-controlled polariscope. In the middle is the coordinate device with the test object in the
immersion tank.

Here F is the stress function, s is an arbitrary harmonic function which can be
determined from the boundary conditions, and R is the radius of the specimen.

Since the axial stress distribution is known, from Eq. (26) the stress function F can
be determined and stress components are calculated as follows:
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The complete determination of the stresses in the case of plane deformation has been
considered also in rectangular coordinates [20].

7. Experimental technique

For photoelastic measurements a computer-controlled polariscope has been de-
signed (Fig. 4). As light source, light diodes have been used. Polarizer and the "rst
quarter-wave plate can be turned by hand. The second quarter-wave plate and the
analyser are controlled by stepper motors. Specimen in an immersion tank is placed
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Fig. 5. Integrated fringe patterns in a light-"eld circular polariscope of a diametrically loaded sphere (left)
and of the wall-to-bottom region of a tempered drinking glass (right, arrows indicate interference blots).

on a coordinate device which enables one to select the part of the specimen to be
measured.

The polariscope is supplied with software that gives the possibility to use it in
several ways. First, the phase-stepping method may be used, which permits also the
determination of the characteristic parameters [21]. Since in annealed glass, optical
retardation is usually less than half of the wavelength and the algorithms of integrated
photoelasticity demand also the azimuth of the "rst principal stress, a speci"c
phase-stepping algorithm has been elaborated [22].

Second, in tempered glassware stresses can be determined using the digitized fringe
pattern. In this case the main problem is automatic detection of the surfaces of the
specimen and correct numbering of the fringes [23].

8. Nonlinear optical phenomena

In the basic equations of integrated photoelasticity (1) the coe$cients are variable.
Due to this the principle of additivity of the birefringence is not valid and the
integrated fringe pattern is in#uenced by the distribution of birefringence as well as by
the rotation of the principal stress axes. Therefore, integrated fringe patterns may have
peculiarities.

Fig. 5 (left) shows the integrated fringe pattern of a diametrically loaded sphere in
a light-"eld circular polariscope. Near the points where the load is applied, one can
observe dark areas that are similar to fringes but somewhat wider and that cross the
basic system of fringes. These secondary fringes are called interference blots [24].

As another example, Fig. 5 (right) shows the integrated fringe pattern of the
wall-to-bottom region of a tempered drinking glass. One can observe interference
blots (shown by arrows) that cross the main fringe system, bifurcation of fringes, etc.

Theoretical explanation of the appearance of the interference blots and fringe
bifurcations has been given in several papers [24,25]. The main practical problem is
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Fig. 6. Computer-generated fringe patterns for the Boussinesq problem at di!erent loads.

the ambiguity of the fringe order which appears due to this phenomenon. In Fig. 6
computer-generated fringe patterns for the Boussinesq problem at three loads are
shown. One should note that the number of fringes that emerge into the interference
blot from its upper and lower parts are not equal. While the number of fringes that
emerge into the interference blot from below is n, on the upper side of the blot the number
of fringes is n#2. Therefore, the fringe order on the left of the interference blot depends
on the way the fringes are counted. This phenomenon needs further investigation.

9. Examples of application

By automatic measurement of the residual stresses in tempered glassware, the fringe
pattern is shown on the screen of the computer and digitized, and using the latter
stresses are calculated. Internal and external surfaces of the test object as well as dark
and light fringes are automatically detected. Fig. 7 illustrates stress measurement in
a tempered drinking glass. Since the stress gradient in the axial direction is weak and
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Fig. 7. Physical and digitized fringe patterns in the wall of a tempered drinking glass (left) and axial stress
p
z

distribution through the wall (right).

Fig. 8. Geometry of a CRT glass bulb (a), stress distribution in two sections (b), and axial and circumferen-
tial stress distribution on the internal (c) and external (d) surface of the neck tube.

p
r
+0, according to the classical sum rule (24) the circumferential stress ph practically

equals the axial stress p
z
.

Fig. 8 shows residual stress distribution in the neck tube of a CRT glass bulb. In this
case photoelastic measurements were carried out with the phase-stepping method
[22]. Circumferential stress ph was calculated using the generalized sum rule (25).
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Fig. 9. Geometry of the cross-section of a bow-tie type optical "bre preform and axial stress distribution.

Fig. 10. Axial stress distribution in two step-index optical "bre preforms.

In Fig. 9, geometry of the cross-section of a bow-tie-type "bre preform and axial
stress distribution are shown. In this case, tomographic photoelastic measurements
were carried out for 60 azimuths and for every direction of the light beam the
birefringence was recorded for 140 points. The other stress components can be
calculated using a sophisticated algorithm [19].

Fig. 10 shows axial stress distribution in two step-index optical "bre preforms.
By investigating an axisymmetric glass article, the light can be passed through the

latter perpendicular to di!erent meridional sections (Fig. 11). In case of axisymmetric
residual stress distribution, one should obtain with all measurements the same data
(di!ering no more than the measurement errors), and interpretation of the data should
give similar stress distribution all over the perimeter.

Practical measurement of residual stress in many bottles, tumblers, CRT neck tubes
and other axisymmetric glass articles has shown that mostly that is not the case.
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Fig. 11. At measurements the light can be passed through the axisymmetric article perpendicular to
di!erent meridional sections.

Fig. 12. Distribution of the meridional surface stress over the perimeter in the funnel of a CRT tube at 5 mm
from the neck seal.

Almost always the residual stress distribution deviates from the axisymmetric one,
often considerably. A method for measuring nonaxisymmetric stress distribution in
axisymmetric glass articles has been developed [26]. As an example, Fig. 12 shows
distribution of the axial stress over the perimeter on the surfaces of a CRT neck tube,
5 mm below the seal. Thus, photoelastic measurements should be carried out for
various azimuths of the light beam in order to establish the real character of the stress
distribution.
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10. Conclusions

Integrated photoelasticity can be e!ectively used for automatic residual stress
measurement and quality assessment of many glass products. At the same time, some
theoretical problems related to nonlinear optical phenomena need further investiga-
tion in order to widen the scope of the method.
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